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Abstract

APPLICATIONS OF STABILITY ANALYSIS TO NONLINEAR DISCRETE DYNAMI-

CAL SYSTEMS MODELING INTERACTIONS

By Jonathan Hughes, M.S.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of

Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2015.

Major Director: Hassan Sedaghat, Professor, Mathematics and Applied Mathematics.

Many of the phenomena studied in the natural and social sciences are governed by pro-

cesses which are discrete and nonlinear in nature, while the most highly developed and

commonly used mathematical models are linear and continuous. There are significant dif-

ferences between the discrete and the continuous, the nonlinear and the linear cases, and

the development of mathematical models which exhibit the discrete, nonlinear properties

occurring in nature and society is critical to future scientific progress. This thesis presents

the basic theory of discrete dynamical systems and stability analysis and explores several

applications of this theory to nonlinear systems which model interactions involving economic

agents and biological populations. In particular we will explore the stability properties of

equilibria associated with inter-species and intergenerational population dynamics in biology

and market price and agent composition dynamics in economics.
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Chapter 1

Introduction

This thesis is concerned with nonlinear discrete dynamical systems and their application

to modeling interactions which occur in the natural and social worlds. In particular we

are interested in applications to biology involving interactions between species and between

different generations of the same species and models involving economic agents making de-

cisions in competitive market environments and adjusting to (or anticipating) the actions

of other agents. Due to biological constraints and the sequential nature of human decision

making these situations lend themselves to being modeled using discrete dynamical systems,

i.e. systems with states which evolve in discrete time steps.

We begin in Part I by presenting the basic theory underlying discrete dynamical systems.

In chapter 2 we will present the basic concepts and definitions necessary to understand the

nature of discrete dynamical systems. Then, in chapter 3, we will proceed to discuss the

notion of system equilibria or ”fixed points”, specifically we will examine the methods used

to determine the local and global stability properties of a given equilibrium and to describe

bifurcation phenomena of the equilibria which may occur due to varying system parameters.

Applications of this theory will be discussed in Part II and will include some introductory

examples and specific cases derived from population modeling in biology in chapter 5 and

agents-based modeling and economic theoretical economics in chapter 6. The unifying thread

1



www.manaraa.com

running through all these examples is the dynamics of interaction. Though all sciences

investigates interactions, e.g. the interactions between point masses in mechanics, between

molecules in basic chemistry, etc., the interactions which occur at higher level of organization

in biological and social systems are exceptionally difficult to predict. This unpredictability is

due at least in part to the nonlinearity of such systems and the fact that these subjects also

often describe phenomena which occur in discrete time. When systems behave in complex,

nonlinear, discrete manners the usual methods of mathematical modeling using differential

equations and analysis may not be effective. The theory of nonlinear discrete dynamical

systems provides a mathematical toolkit to help understand these complicated situations.

The purpose of this thesis is to help present some of the theoretical and practical results

from this still nascent theory and to encourage its further exploration and development.

2
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Part I

Theory

3
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Chapter 2

Dynamic Systems, Discreteness and

Nonlinearity

”...mathematical time, of itself, and from its own nature, flows equably without

relation to anything external...”∼Isaac Newton [19]

1The notion of time provides one of the essential characteristic of dynamical systems. But the

”time” that we are interested in for this purpose is not the contemporary idea of physical

time, which is subject to myriad qualifications imposed by modern physical theory and

experiments, nor the subjectively felt passing of time, but the classical characterization

quoted from Newton above, i.e. as a general mathematical parameter. This time parameter

serves to index the transitions of the system from one ”state” to another. This dependence

on time is what makes a system a dynamical one. We will now give a definition of the

term ”state” used above and the corresponding notion of a ”state-space” which provide a

framework for discussing dynamic systems.

Definition 1. The state-space of a dynamical system is a collection of variables depending

on time and taking values in a vector space V, such that the information contained in the

1Material and definitions in this section is indebted to [4]

4
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variables at a given time t0 is enough to determine the values of the variables for all times t.

The values of these variables a given time is the state of the dynamical system at that time.

The genesis of the ”state-space” framework for representing dynamical systems lies in

the philosophy of classical mechanics. It finds its prototypical expression in the following

statement from Pierre Simon de Laplace:

”Given for one instant an intelligence which could comprehend all the forces by

which nature is animated and the respective situation of the beings who compose

it...for it, nothing would be uncertain, and the future, as the past, would be

present to its eyes”[17]

Here, within the quote, I have italicized the portion of Laplace’s remark that defines

in plain language what a ”state” is as it stands in the state-space model for systems–the

respective situation of the beings that compose nature. In the continuous case covered in

classical mechanics the evolution of the system is governed by a set of first-order differen-

tial equations, corresponding to Laplace’s animating forces. If these equations are known

together with the system’s current state, then we can determine the system’s behavior for

all time. But, in addition to the continuous states modeled in classical mechanics, the state-

space representation lends itself to the modeling and analysis of discrete dynamical systems

as well.

In the discrete case, just as in the familiar continuous case, we consider the evolution of a

set of state variables depending on time. The critical difference is that time is now taken to

be integer valued, and instead of a continuous flow from one state of the system to another

governed by differential equations we have discrete jumps from one state to the next. These

jumps are governed by ”difference equations”.

With the assumption that time is divided into discrete steps and takes sequential values

from the natural numbers we define the difference equation governing the state variable x

by:

x(n+ 1) = f(x(n), n) x(0) = x0 (2.1)

5
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Where f is a function from the state space to itself. In the case where f(x(n), n) is

autonomous, which is to say that it has no explicit dependency on the time variable (here

denoted by ”n”), the equation (2.1) will be what is called a ”recurrence relation” or ”re-

currence mapping”. Regardless of the autonomous or non-autonomous nature of the system

we note that while the continuous systems models’ transition functions were given as first-

order differential equations the analogous difference equation above gives each state as only

a function of time and the systems previous state; it does not depend on states farther back

in time. This fact is signified by calling such equations ”first-order difference equations”. Of

course, a transition function which depends on states two steps back would be a ”second-

order difference equation”, and those depending on states up to three time steps back are

called ”third-order” and so on.

The discrete analog to the solution trajectories from ordinary differential equations is

given by the sequences of states induced by the mapping for a given initial condition. In the

case of a system governed by a recurrence relation this sequence will be given by:

{x0, f(x0), f(f(x0)), ...}

which will be denoted:

{x0, f(x0), f 2(x0)), f 3(x0)...}.

Each progressive application of the mapping function f to the previous state is called

an ”iterate” of the system. Naturally the ”nth” application of the mapping to the initial

condition (i.e. the fn term in the solution sequence) is called the ”nth-iterate” of the system.

As the term ”solution trajectory through x0” is applied to the curve generated by the solution

to the initial value problem in a continuous dynamic system, this sequence is termed the

”positive orbit of x0” and will be denoted O(x0) for short.

6
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2.1 Linear Difference Equations

Our focus in this thesis is on nonlinear difference equations, but nonlinearity as such is a

negative property in that it is defined to be the absence of linearity. So to understand it we

must first define what it means for a given system to be linear.

Definition 2. A function f : D → R, where D and R are vector spaces over a field F , is

said to be linear if ∀x, y ∈ D, and ∀α, β ∈ F we have

f(αx+ βy) = αf(x) + βf(y).

A function is nonlinear if it is not linear.

Nonlinear systems are those which are governed by nonlinear transition functions.

The simplest and most well understood discrete dynamic systems are those which are

governed by what are referred to as ”affine” equations. In the case of first-order difference

equations these will have the form:

x(n+ 1) = a(n)x(n) + b(n), x(0) = x0. (2.2)

The above a(n) and b(n) take constant values depending on time n with the restriction

that a(0) = 1, and b(0) = 0. In the case where the b(n) terms are identically zero for all n

the difference equation can be seen to be governed by a linear function. Some texts (and

common convention) will denote all equations of the form (2.2) as linear, regardless of what

values the b(n)’s take, however, this is not technically correct, though it is mostly harmless

in practice. Throughout this work we will adopt a stricter definition of linearity given above.

The solution to (2.2) will be given by iteration and, following [7], we show it will have

the form

x(n) = a(n) · a(n− 1) · · · a(2) · a(1) · x0 =
n∏
i=1

a(i) · x0, (2.3)

7
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when the b(n) are identically zero for all n i.e. the system is linear.

When the b(n) take values other than zero it will have the form

x(n) =
n−1∏
i=0

a(i) · x0 +
n−1∑
k=1

(
n−1∏
j=k+1

a(j)

)
· b(k). (2.4)

This solution follows from simple induction. Clearly for n = 0 we have x(0) = a(0) · x0 +

b(0), as this merely restates that our initial value for x is x0. Now if we assume that (2.4)

holds for n, then by applying our mapping again we have:

x(n+ 1) = a(n) ·

[
n−1∏
i=0

a(i) · x0 +
n−1∑
k=1

(
n−1∏
j=k+1

a(j)

)
· b(k)

]
+ b(n),

after distribution and collecting the terms this becomes :

n∏
i=0

a(i) · x0 +
n∑
k=1

(
n∏

j=k+1

a(j)

)
· b(k).

This is obviously equivalent to

(n+1)−1∏
i=0

a(i) · x0 +

(n+1)−1∑
k=1

(n+1)−1∏
j=k+1

a(j)

 · b(k).

Thus by induction we can conclude that (2.4) holds for all n.

Linear functions are said to display the superposition and homogeneity principles, the

former meaning that the function applied to a sum is equivalent to the sum of the function

applied to the individual terms (i.e. f(x+y) = f(x)+f(y)), and the latter that the function

applied to the additive identity of the domain will again yield the additive identity in the

range (f(0) = 0). Functions with these properties are special cases and can be said to be the

exception as opposed to the rule. The tremendous development of the mathematical theories

that exploit the linearity which may be present in a system has been due to the comparative

simplicity of linear systems, while the difficulties inherent in the theory of nonlinear systems

8
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have made its progress much slower. This is in spite of the fact that most of the phenomena

in the natural world and most mathematical functions themselves are nonlinear.

While linear systems tend to behave predictably, nonlinear systems are much more var-

ied (and potentially deranged) in their behavior. This is greatly exacerbated by the move

from continuous to discrete systems. The continuity and differentiability properties of the

former are leaned on heavily in the application of approximate linearization techniques to

obtain solutions, while in the discrete case, which jettisons continuity and differentiability

notions with regard to time, though he state variables themselves may be structured in a

continuum, and often the continuity of the transition function in regard to the state vari-

ables is assumed. Behaviors that are impossible in the linear case regularly manifest when

nonlinearities are introduced, and behaviors in the discrete case manifest that are excluded

in the continuous case. Together these facts compound and create behavior, which under

the pleasant conditions of linear, continuous analysis, would be incredible in every sense of

the word.

2.2 Nonlinear Systems

For comparison’s sake, we begin this section by considering the following differential equation:

dx

dt
= kx− x2 x(0) = x0 k > 0. (2.5)

Here we have a continuous dynamical system with a transition function which only de-

pends on the state variable x and a parameter k. Note that in this case the transition

function is nonlinear and that the location of the equilibrium (or the existence of multiple

equilibria) depends on the parameter involved. In a single dimension this dependence of the

equilibrium location, and the possible existence of multiple equilibria, on the parameters is

an emergent property of nonlinear system and is not present in linear cases.

Equation (2.5) as stated will have two equilibrium points, x = 0 and x = k, These points

9
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partition the real line into three intervals which display differing behavior, for x values left

of 0 the states of the system flow leftward indefinitely, between 0 and k the state trajectories

move rightward to the equilibrium at x = k, while for initial conditions above k the states

decay leftward and move towards the x = k equilibrium. This gives evidence to the fact that

nonlinear systems can display richer varieties of behavior than their linear counterparts.

The equivalent examples for a nonlinear one-dimensional discrete dynamical system is

called the logistic equation or logistic map. We can proceed from the above continuous

example to the discrete case by using Euler’s discretization method following [7]. If we wished

to approximate (2.5) with a difference equation we could consider a particular domain of

interest [a, b] and partition the domain of definition into n intervals of size h = b−a
n

. Euler’s

method for differential equations then says that for a given x ∈ [a, b],

dx

dt
= kx(t)− x(t)2 ≈ x(t+ h)− x(t)

h
,

so that in approximation

x(t+ h) = (1 + kh)x(t)− hx(t)2.

If we consider the discrete time steps generated by incrementing by h to be the domain we

will have:

x(n+ 1) = µx(n)− βx(n)2, (2.6)

where µ = 1 + hk and β = h. By making the simplifying change of variables

x̄(n) =
β

µ
x(n)

we obtain the system

x̄(n+ 1) = α · x̄(n)(1− x̄(n)), (2.7)

10
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where α = µ2

β
.

Assume we are working with a system which can be described by (2.7), where initial values

are restricted to the interval [0, 1]. Equilibria will occur at x0 = 0 and x0=α−1
α

,, provided

that the latter is in fact in within the relevant interval [0, 1] . Note that the stability of

each equilibrium is dependent on α, and changes as α moves through its possible values.

The stability dynamics of equation (2.7) manifest some counterintuitive behavior, a typical

trait of nonlinear as opposed to linear difference equations, which we will present following

[6]. Consider the set of points which are stationary after two applications of the transition

mapping defined in (2.7) i.e. points which satisfy:

x(n) = α2 · x(n)(1− x(n)) · [(1− αx(n)(1− x(n))] .

If we treat x(n) as a given variable this equation is quartic, though given that we already

know that x = 0 and x = µ−1
µ

are fixed points (and hence generate unintersting period 2

cycles) we can divide out the resulting quartic by these factors, ending up with a quadratic

equation. The roots of this quadratic equations will be given by:

λ =
(1 + α)±

√
(α− 3)(α + 1)

2α
.

This implies that period 2 cycles will only exist if α ≥ 0. It is also known that period 4

cycles will only manifest when α reaches 1+
√

6. Likewise higher and higher degree 2n cycles

will appear more and more quickly as α increases, and then can ”collapse” to cycles of smaller

degree, only to explode again. These chaotic dynamics do not appear in continuous one-

dimensional systems, let alone linear ones. For example simple partial fraction decomposition

lets us solve the continuous case of the logistics equation to see that has the solution

x(t) =
1

1 + Ae−kt
,

11
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which has comparatively sedate dynamics.

12
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Chapter 3

Equilibria and Stability Analysis of

Nonlinear Discrete Dynamical

Systems

We now present the methods and tools used for the analysis of nonlinear discrete dynamical

systems. Specifically, we will extend or amend the notions involved in the first-order, one-

dimensional equations, which we briefly discussed in the previous chapters, to those of higher

order and dimension.

To begin, a brief restatement of the general form of a first-order difference equation (2.1):

x(n+ 1) = f(x(n), n) x(0) = x0.

For notational compactness from here on out we will often use subscripts to indicate the

integer dependence of the equation’s terms, so that the above (2.2) would appear as:

xn+1 = f(xn, n) x(0) = x0.

13
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The analysis of dynamical systems is primarily concerned with the equilibria of systems

and the various properties of those equilibria. A formal definition of what constitutes an

equilibrium of a system follows:

Definition 3. Consider the system given by the transition equation (2.1) where f : D → Rn,

D ⊂ Rn. An element x∗ in the domain of f is said to be an equilibrium of the system if

f(x∗) = x∗.

In the continuous case, autonomous dynamical systems that reach equilibrium must have

started at that equilibrium: i.e if dx
dt

= f(x, t) with f being continuous and f(x, tk) = 0 for

some tk > 0 then it must be the case that f(x, t) = 0 for all t in the relevant time domain.

However, in a discrete dynamical system it is possible for the state variable to reach an

equilibrium state in a finite number of iterations. Systems which exhibit sequences of state

variables which begin off an equilibrium and end up constant at that equilibrium are said to

have eventually fixed points.

Just as in the continuous case, equilibria can be categorized based on their behavior and

the primary motive for our analysis is to determine whether or not a given equilibrium is

stable. In order to define the term stable we need to introduce the concept of a norm on a

vector space:

Definition 4. Let V be a vector space. A norm on V is a function ‖·‖ : V → R such that

the following hold

1. 0 ≤ ‖v‖ ∀v ∈ V

2. ‖v‖ = 0 ⇐⇒ v = 0

3. ‖αv‖ = |α|‖v‖ ∀v ∈ V, α ∈ F

(where F is the field over which V is a vector space.)

4. ‖v + u‖ ≤ ‖v‖+ ‖u‖ ∀u, v ∈ V .

14
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Essentially a norm establishes a partial order among the vectors in a vector space anal-

ogous to the role played by the absolute value on the real line. Using this order we can

establish notions of sequential convergence and hence of stability:

Definition 5. Let x∗ be an equilibrium of a system defined as in (2.1). x∗ is called stable if

for any given ε > 0 there exists a δ > 0 such that ‖x∗−x0‖ < δ implies that ‖fn(x0)−x∗‖ < ε

for n > 0. If the equilibrium is not stable it is called unstable.

It should be noted that it is possible for a point arbitrarily close to x∗ to generate an orbit

which stays arbitrarily close to x∗ in the above sense, but which does not tend to converge

towards x∗. For instance, the orbit could merely circle around the equilibrium staying within

the prescribed bounded region but not approaching the equilibrium. When initial conditions

that are sufficiently close to x∗ eventually approach x∗ we call the equilibrium (or an invariant

set of points exhibiting the same ”attractive” property) an attractor. Formally this notion

of an attractor can be stated as follows.

Definition 6. Let A be an subset of a vector space V such that A is invariant under the

transition function f : V → V (i.e. f(A) ⊆ A). Define the distance between A and a point

x, ρ(A, x) as ρ(A, x) = mina∈A ‖x− a‖. Then if there exists an ε > 0 such that ρ(A, x) < ε

implies lim
n→∞

ρ(A, fn(x)) = 0 then we say A is an attractor for the dynamical system with

governing equation f .

An equilibrium which is also a stable attractor is called an asymptotically stable equilib-

rium. Since continuous functions are much less prone to exhibit unpredictable behavior than

discrete functions much of our analysis exploits continuous features that may be present in

discrete systems. Hence if f : D → R, D ⊆ R, is continuously differentiable with respect to

the state variable x (i.e. f ∈ C∞(D), D ⊆ V , where V is the state space) and the system

given by

xn+1 = f(x(n)) x(0) = x0

15
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has an equilibrium point x∗ then we have that |f ′(x∗)| < 1 implies x∗ is stable while

|f ′(x∗)| > 1 implies that x∗ is not stable. Cases like these where |f ′(x∗)| 6= 1 are called

hyperbolic. Further analysis for the case where |f ′(x∗)| = 1 relies on liberal application of

Taylor’s Theorem to use the fact that f(x(n)) is continuously differentiable to eventually

determine the behavior of nearby points [10]. Deeper analysis of higher order terms is nec-

essary to determine stability properties. As these techniques can become rather specialized

and particular to one dimensional systems, we will neglect further elaboration along these

lines. Readers are encouraged to consult the bibliography, particularly [10, 11, 13], for more

detail about this particular area of analysis.

3.1 Higher Dimensional Difference Equations

Our purpose in presenting the theory of discrete dynamical systems is to lay a foundation

to explore some particular applications of that theory to the biological and social sciences

which model interaction. Since the term ”interaction” implies systems with two or more state

variables we will now investigate the broader extension of the above one-dimensional methods

to higher order systems, this will allow us to examine the particular cases of interest. As our

application examples involve two-dimensional systems we will present the theory explicitly

in the two-dimensional case.

Consider the discrete dynamical system governed by the transition equations:

x1(n+ 1) = f1(x1(n), x2(n))

x2(n+ 1) = f2(x1(n), x2(n))
, (3.1)

where f1, f2 are functions from the relevant domain to the relevant range of interest (in this

case D ⊆ R2 and R2, respectively). Consider the case where f1 and f2 are linear, then the

16



www.manaraa.com

above system could be written in the form

xn+1 = Axn,

where the state variable is now a vector inR2 andA is a 2×2 matrix with constant coefficients.

The stability of a fixed point x∗ in such a system is characterized by the eigenvalues of the

matrix associated with the system. If the maximum modulus for the associated complex

eigenvalues (λ1,λ2) is greater than one then the equilibrium is unstable, if it is less than one

then the equilibrium is stable, and if it is exactly one and the matrix has a single eigenvalue

(i.e. λ1 = λ2 = 1) then the equilibrium is unstable [6].

The most fundamental tool involved in the analysis of nonlinear discrete dynamical sys-

tems is ”linearization” of the system about an equilibrium point. In a one-dimensional

system given by the differentiable transition equation f : D → R,D ⊆ R this linearization

near the equilibrium point x∗ takes the form

f(x) ≈ f
′
(x∗)(x− x∗) + x∗.

For two-dimensional discrete dynamical systems with continuous differentiable transition

functions f1 and f2 the ”linearization” associated with the system given by

x1(n+ 1) = f1(x1(n), x2(n))

x2(n+ 1) = f2(x1(n), x2(n))
.

is determined by the Jacobian matrix of the system:

A =


∂f1
∂x1

∂f1
x2

∂f2
∂x1

∂f2
x2


To fully explain how this local dependency on the systems linearization of the equi-
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librium’s stability properties arises we will introduce one of the other significant tools in

nonlinear analysis, Liapunov Theory.

3.2 Liapunov Theory

The basis of Liapunov Theory1 is the Liapunov Function associated with a given system

of difference equations. Assume that we have a vector x ∈ Rm,m ∈ N and the transition

function for the system is given by (2.1) with f : D → Rm, D ⊆ Rm and is autonomous. For

a given functional V from Rm → R we define the variation of V as

4V (n) = V (x(n+ 1))− V (x(n)).

The definition of Liapunov function for discrete dynamical systems is analogous to the defi-

nition from the continuous case, with the variation serving the role in the discrete case that

the derivative does for continuous systems.

We now follow [6] and define a Lyapunov function by Definition 7.

Definition 7. A function V from an open subset G of Rm into R is a Liapunov Function

on the set G if:

1. V is continuous on G

2. 4V ≤ 0 whenever both x(n) and x(n+ 1) = f(x(n)) are in G.

The Liapunov function V is said to be positive definite at the fixed point x∗ if there exists

an open ball Bε(x
∗) centered at x∗ such that V (x) > 0 for all x ∈ Bε(x

∗). If the same case

holds but with V (x) < 0 then V is called negative definite. We are now prepared to state

a series of theorems which allow us to determine the stability of a given equilibrium in R2

using Liapunov functions. Our presentation of these theorems follows [6] and [20]

1Material in this section is derived from [6],[7] [18], and[20]
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Theorem 1. If there exists V a positive definite Liapunov function on the open ball Bε(x
∗)

where x∗ is the fixed point of an m-dimension discrete dynamical system with continuous

transition function, then we can conclude that x∗ is stable. If the variation of V under the

mapping is negative on Bε(x
∗) then we can also conclude that x∗ is asymptotically stable. If

this holds true when Bε(x
∗) is extended to all of Rm and V (x) goes to infinity as |x| goes to

infinity, then x∗ is globally asymptotically stable.

Notice that this result allows us to a conclusion regarding the global behavior of a system if

certain conditions are met. This is a very powerful conclusion to be able to draw. Information

contained in the linearization of a system generally can only tell us about local behavior

around the fixed point about which we are linearizing. Global results are normally much

more difficult to obtain. However, local results are good to have and often are satisfactory

for given applications. We may now return to examine the process of linearization and use

our new theorem to study the behavior of systems about a given equilibrium.

Recall from the previous section that the linearization of a given 2-dimensional au-

tonomous discrete dynamical system with sufficiently smooth governing transition function

f is given by the system of equations:

xn+1 = A · xn

Where here xn and xn+1 are 2× 1 vectors real valued vectors and A is a 2× 2 matrix given

by:

A =


∂f1
∂x1

∂f1
x2

∂f2
∂x1

∂f2
x2


We now introduce a theorem which serves for the discrete case the role that the Hartman-

Grobman Theoreom does for continuous systems.

Theorem 2. Let f : D → Rm, D ⊆ Rm be continuous, differentiable map with regard to
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all system state variables defined on an open subset around a fixed point x∗ and let A be the

Jacobian matrix of the system about x∗. Then:

1. If the maximum modulus of the eigenvalues of A is less than one then x∗ is asymptot-

ically stable.

2. If the maximum modulus of the eigenvalues of A is greater than one then x∗ is unstable.

3. If the maximum modulus of the eigenvalues of A is equal to one then no conclusion is

drawn.

Proof of this theorem rests on particular properties of Liapunov functions, thus we will

construct an explicit Liapunov function for our system. We will do so by defining a quadratic

form on our R2 space. If x is a 2×1 vector of state variables, let B = (bij) be a real symmetric

2× 2 matrix. We will define V: R2 → R by

V (x) = xTBx,

where the superscript T indicates the transpose operation. Given our restrictions this equa-

tion will become

V (x) = b11x
2
1 + 2bdx1x2 + b22x

2
2,

where bd is equal to the off diagonal elements (which are identical due to the imposed

symmetry condition). We wish to show that V (x) as just defined is indeed a Liapunov

function when we let B be a positive definite matrix. Clearly the continuity condition is

satisfied, thus we only need to check whether or not 4V ≤ 0 whenever both x̂(n) and

x̂(n+1) = f(x̂(n)) are in G, where G is defined to be some open subset of R2 containing the

equilibrium. Assume that we have chosen our domain such that both x̂(n) and x̂(n + 1) =

f(x̂(n)) remain in it for suitable n. We can investigate the variation of V (x)

4V (x(n) = xT (n+ 1)Bx(n+ 1)− xT (n)Bx(n)
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Since we are working in the linearization of the system we can write the above as:

4V (x(n)) = xT (n)ATBAx(n)− xT (n)Bx(n),

which simple factoring reveals to be

4V (x(n)) = xT (n)(ATBA−B)x(n).

Thus the second condition will be satisfied if and only if ATBA − B is equivalent to some

−C where C is positive definite. Two results regarding the maximum eigenvalues which will

assist us in proving Theorem 2 follow (results derived from [20]):

Lemma 1. 1. The maximum modulus of the eigenvalues associated with A will be less

than one if and only if for any given positive definite C, the equation B −ATBA = C

has a unique solution B which is also symmetric and positive definite.

2. If the maximum modulus of the eigenvalues associated with A is greater than one then

there exists B such that given a positive definite C, B−ATBA = C holds but B is not

positive semidefinite.

If we are in the linear case, i.e if we are working with an equation of the form:

xn+1 = Mxn x(0) = x0, (3.2)

with M a matrix of constant terms and x a vector we can see that Theorem 2 holds directly,

since we know the solution of (3.2) will be:

xn = Mnx(0). (3.3)
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To prove stability it is sufficient to show that

lim
n→∞

Mn = 0.

To see this, let J be the Jordan form of M , then Mn → 0 only if each Jordan block of J is

such that Jn → 0, clearly this will be the case if J is diagonal and the maximum modulus

eigenvalue if M is less than one.2 Also this will fail if the maximum modulus eigenvalue of

M is greater than one. With this information we can prove the two statements of our lemma

above.

Proof. Lemma 1

Consider the linear system given by

xn+1 = Axn x(0) = x0,

where A is a constant matrix. Assume that the maximum modulus of the eigenvalues of A

is say ρ < 1, In [20] it is proven that there exists a nonsingular matrix Q such that for ε > 0,

we have that in the ‖·‖2 norm ‖Q−1AQ‖2 ≤ ‖ρ‖2 + ε. Thus we have a nonsingular Q with

‖Q−1AQ‖2 < 1. Let B = QTQ. We then have that

xT (B − ATBA)x = xTQTQx− xTATQTQAx

= ‖Qx‖2
2 − ‖QA(Q−1Q)x‖2

2

≥ ‖Qx‖2
2 · (1− ‖QAQ−1‖2) > 0,

so we can conclude that B − ATBA is positive definite. To prove the other direction we

introduce a new norm ‖·‖M for a given positive definite matrix M defined so that for a given

vector x, ‖x‖M = xTMx. Clearly from the positive definiteness of M we see that this is in

2Even if the maximum modulus eigenvalue is one, but the M is ”spectral radius diagonalizable” i.e. all
of the maximum modulus eigenvalues lie on diagonal Jordan blocks, this will still hold.[6]
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fact a norm. Now given our above A and assuming there is a unitary positive definite matrix

B such that B − ATBA we have that for a given vector x

‖Ax‖2
B = xTATBAx,

and since B − ATBA positive definite so we know that for all x

xTBx− xTATBAx > 0

so that

‖x‖2
B = xTBx > xTATBAx = ‖Ax‖2

B.

Since this holds for all x all of the eigenvalues of A must be less than one.

Now we are equipped to prove Theorem 2 for the general, nonlinear case.

Proof. Theorem 2

We are interested in solutions to the difference equation

x(n+ 1) = f(x(n)) x(0) = x∗,

where x∗ is the equilibrium for the defined system that we are interested in and f is considered

sufficiently smooth in the state-space variables. From the Taylor’s Theorem we know that

f(x) = f(x∗) + A(x− x∗) + g(x, x∗),

where A is the Jacobian matrix for the system evaluated at the equilibrium and g(x, x∗)→ 0

as x→ x∗. Letting H = x− x∗ we then have

f(x∗ +H)− x∗ = AH + g(H).
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If we consider the right hand side AH + g(H) on its own we notice that it is zero if and only

if f(x) = x∗ so that zero is a fixed point of AH + g(H) if and only if x∗ is an equilibrium

of f . We also see that repeated iterations of the map AH + g(H) go to zero if and only if

repeated applications of the map f go to x∗, thus stability of one implies (and is implied by)

the stability of the other. This result also holds for instability as well. Since it will prove

more convenient we will work with H from here on.

Consider the case where the maximal modulus eigenvalue of the Jacobian matrix A for

the system defined by the transition function f is less than one and consider the system

associated with H. From our above lemma we know there is a symmetric matrix B such

that B −ATBA is positive definite, we can make a Liapunov function V (H) = HTBH. We

are interested in the variation 4V (H) we know that:

4V (H(n)) = HT (n+ 1)BH(n+ 1)−HT (n)BH(n),

by letting H = H(n) we see that this is equivalent to

(AH + g(H))TB(AH + g(H))−HTBH,

using properties of the transponent operation and simple factoring we have that this is

equivalent to

((AH)T + g(H)T )B(AH + g(H))−HTBH,

and by further manipulation

((AH)T+g(H)T )B(AH+g(H))−HTBH,= HT (ATBA−B)H+2HTATBg(H)+g(h)TBg(h)

= HT (ATBA−B)H + 2HTATBg(H) + V (g(H))
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we arrive at

−HT (B − ATBA)H + 2HTATBg(H) + V (g(H)).

Since B − ATBA is positive definite ”HT (B − ATBA)H” is simply the ”‖·‖B−ATBA” norm

applied to H, and hence is equivalent to the standard ‖·‖1 norm. Thus there exists α

such that given any x, ‖x‖B−ATBA > α · ‖x‖2
1 And since g(H) goes to zero ”supralinearly”

(i.e. faster than H does) we can conclude that in a suitable region around the equilibrium

5V (H) < 0, and thus the equilibrium is stable. Now if ρ(A) > 1, where rho(A) denotes the

maximum modulus of the eigenvalues of A, the case is simpler. Assume we are working near

enough to the equilibrium point x∗ so that the g(H) terms are negligible, so we can consider

the system to be defined as f(H) = AH + ε. We know that A has at least one eigenvalue

λ such that |λ| > 1. Consider an open ball centered at the equilibrium of radius µ and the

vector given by the normalized version of the eigenvector associated with λ (i.e vλ = vλ
‖λ‖)

multiplied by the constant c = µ · ( 1
λ

+ 1
2
). Since λ is greater than one its obvious that this

vector will be within a µ-neighborhood, but fn(cvλ) = λn−1µ(1+ λ
2
)vλ > µvλ for all n, so the

orbit of vλ will exit the µ-neighborhood, thus the equilibrium is unstable. There are ready

examples for both stability and instability for the case of ρ = 1 available in [6] and thus no

conclusion follows from our theorem in this case.

3.3 Global Stability Properties for Higher Order

Discrete Dynamical Systems: An Example

Examining the linearization of a system with continuous transition mapping can only tell us

about local behavior of the system about a given equilibrium point. This is because as we

move away from the equilibrium point the possible nonlinear terms of the function’s Taylor

series begin to have more and more influence on the qualitative dynamics of the system.

Thus the system’s linearization will not suffice to determine the system’s global behavior
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and stability properties for nonlinear cases. So far our only result that implies anything

about the global properties of a system come from Liapunov theory. As it is generally quite

difficult to come up with suitable Liapunov functions for a given system this too will not be

overly helpful when investigations extend beyond the local case.

So what are we to do when we wish to understand global behavior of discrete dynamical

systems? The answer (for now) is that we must consider other properties specific to the

form of the systems in question and rely on restrictions implied by the phenomena which

the system is modeling, such as the fact that populations must be non-negative, etc.

To begin we will work with a simple example from a one dimensional system and extend it

to a more general, higher-order case. We follow [5] in examining a one dimensional difference

equation of the form

x(n+ 1) = g(x(n)) x(0) = x0 (3.4)

under the assumption that all initial values x0 are positive and that the mapping g : R→ R

is continuous and only give orbits with non-negative terms for any given positive initial value

x0. In addition we will assume that there is only a single equilibrium point,x̂, for the system

. Such a system will be referred to as a population model. We will use them as a base case

for how to go about analyzing more complex cases. We will exploit certain monotonicity

criteria which may be present in population models to help determine global properties.

These results can be found in [5].

We now wish to explore a particular example of a higher order system to give the reader

an idea of what is involved when trying to determine global stability properties. Assume we

are working with a system which appears to be governed by a ”delay-logistics equation” of

the form

xn+1 =
Axn

1 +Bxn−1

x(1) = x1, x(2) = x2

with the parameters such that A > 1 and B > 0. A representative plot of the orbit of such

an equation with parameter values A = 10, B = 5, x(1) = 2, and x(2) = 1 is given by Figure
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3.1 below.

Figure 3.1: A=10, B=5, x(1)=2, x(2)=1

Investigation of many such numerical examples may help us to reverse engineer the source

of the apparent stability properties. By tracing through repeated patterns in the numerical

simulations we may be able to establish the underlying analytic properties which are causing

the apparent stability behavior or we may generate a counterexample. We may then be able

to generalize to other, less restricted cases. In the case above we notice a certain pattern of

oscillations converging to an equilibrium point which repeats through numerous variations

of the underlying parameters. We follow Kocic and Ladas [14] in presenting a generalization

of the above to get global stability results for certain special systems with delays. We begin

by introducing the second order nonlinear difference equation determined by the equation

xn+1 = xnf(xn, xn−1) x(0) = x0, x(1) = x1 (3.5)

Note that we could just as easily treat the above equation as a two-dimensional system by

letting yn = xn−1, however, for purposes of our analysis we will continue to work with the
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the system in its above delayed form. In order to begin we need to introduce several new

concepts, beginning with oscillations of an orbit of solutions.

Definition 8. An orbit {xn} of a one dimensional system of difference equations is said to

oscillate about and equilibrium x̂ if the terms of {xn − x̂} are neither eventually all positive,

nor eventually all negative. It is said to strictly oscillate if it oscillates and for every n > 0,

there exists m, p > n such that xm − x̂, xp − x̂ are less than zero.[14]

We can see that, if we require the definition above, it will be convenient not to write our

second order difference equation in multivariable form.

When a system displays oscillatory behavior, we will like to focus on certain ”strings”

of the orbits. These ”strings” are in essence finite subsequences of consecutive terms in

the orbit. If an orbit oscillates about an equilibrium x̂ a string of terms all of which are

greater than or equal to x̂ will be called a positive semi-cycle, while if a string of terms which

contains elements less than x̂ will be called a negative semi-cycle. Of course, we wish that

our semi-cycles are maximal, if a positive (or negative) semi-cycle is properly contained in

another positive(or negative) semi-cycle then we will only take in consideration the larger

(and in the end, largest) semi-cycle in the chain. Now we will state and prove a result

regarding the nonlinear second order difference equation above following [14]

Theorem 3. Assume that f is restricted to positive real arguments and takes values in

the positive real numbers, also assume that f(u, v) is not increasing u and decreasing in v

and that u · f(u, u) is increasing in u. Also assume that the system has a unique positive

equilibrium x̂, then x̂ is globally asymptotically stable.

Proof. To prove this we consider a positive initial condition for x0 and x1. To continue we

need to establish several inequalities which follow from the assumed properties of f given

above then, given 0 < a < x̂ < b, we have that:

af(a, a) < x̂ bf(b, b) > x̂
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x̂f(
x̂2

a
,
x̂2

a
) > a x̂f(

x̂2

b
,
x̂2

b
) < b

x̂f(x̂f(a, a), x̂f(a, a)) > a x̂f(x̂f(b, b), x̂f(b, b)) < b

The top row’s inequalities follow from from the fact that f(x̂, x̂) must be equal to one, and

the assumed monotonicity of uf(u, u). Since we assume that a < x̂ it follows that x̂2

a
> x̂ and

since for b > x̂ it follows that bf(b, b) > x̂ we have x̂2

a
f( x̂

2

a
, x̂

2

a
) > x̂ and by simple algebra our

middle left inequality is established. An analogous argument using the top-right inequality

serves to establish the middle-right inequality. Also from simple algebraic manipulation of

af(a, a) < x̂ we can establish that x̂f(a, a) < x̂2

a
and referring back to our assumption that

f(u, v) is nonincreasing in v, we establish the lower left (and by similar reasoning lower right)

inequalities.

We also need to note some facts about semi-cycles which may occur in our system:

1. A positive semi-cycle cannot have two consecutive terms equal to x̂ (since then all

terms afterwards would be x̂ and the semi-cycle would fail to be finite.)

2. Every semi-cycle after the first must have at least two terms. This follows because

f(u, v) is non-increasing in the second argument so that

xn+1 = xn · f(xn, xn−1) > xn · f(xn, xn)

and from the monotonicity of uf(u, u) we know that xn · f(xn, xn) > x̂f(x̂, x̂) > x̂

3. The maximum values (respectively minimum value) in a positive (negative) semi-cycle

is either the first or second term of the semi-cycle. Moreover after the first term of

the positive semi-cycle the remaining terms are non-increasing, while in a negative

semi-cycle they are non-decreasing. This is because for two positive consecutive terms

xn, xn+1 we have

xn+2 = xn+1f(xn+1, xn) ≤ xn+1f(x̂, x̂) = xn+1,
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where the inequality results from the non-increasing and decreasing character of the

first and second arguments respectively.

4. Except in the first semi-cycle (again due to our ability to choose the initial conditions

arbitrarily) in any semi-cycle the maximum (or minimum) term cannot be equal to the

last term of the semi-cycle. For the positive case we note that if the maximum is the

last term say xn then xn−1 < xn (since xn is the maximum) and xn+1 < x̂ (since it is

the last term of a positive semi-cycled) but we know

xn+1 = xnf(xn, xn−1) ≥ xnf(xn, xn),

from the fact that f(u, v) is non-increasing in the second argument. While xnf(xn, xn) >

x̂f(x̂, x̂) from our top right inequality and the fact that f(x̂, x̂) must be unity. But

this means that xn+1 > x̂ and xn+1 < x̂ which is impossible, thus the last term of a

positive semi-cycle cannot be the maximum term of that semi-cycle. Of course, the

symmetric argument follows from for negative semi-cycles for our above inequalities.

5. For solution orbits for four or more semi-cycles, each successive maximum for the

positive semi-cycles is decreasing, while each successive minimum for the negative

semi-cycles is increasing.

We can see this by considering a sequence of four semi-cycles with respective max-

ima/minima denoted M1,M2,M3,M4. Without loss of generality we assume that M2

is the maximum of a positive semi-cycle. We must show that M4 < M2 while M1 > M3.

From above we know M2 must be the first or second term of its semi-cycle, if it is the

first then M2 = xlf(xl, xl−1)) for xl, xl−1 the final terms in the preceding negative

semi-cycle and from the monotonicity properties of the arguments of f we can con-

clude that this is less than x̂f(M1,M1) while if it is the second value we get the same

result with one additional step. Likewise for the negative semi-cycles we can obtain
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M3 ≥ x̂f(M2,M2). So we have

M4 < x̂f(M3,M3) < x̂ < x̂f(f(M2,M2), f(M2,M2)) < M2,

while

M3 > x̂f(M2,M2) ≥ x̂f(x̂f(M1,M1), x̂f(M1,M1)) > M1.

Trivially if the orbits of initial values for the system have a finite number of semi-cycles,

then it must identically be x̂ after some finite point, and thus the equilibrium x̂ is globally

asymptotically stable. So we will assume that there exists some initial condition x0, x1 such

that the solution orbit generated will have an infinite number of semi-cycles. In that case,

then from 5 above we know that m = lim inf {xn} and M = lim sup {xn} must both exist,

and it must be that 0 < m ≤ x̂ ≤M , and that

M ≤ x̂f(x̂f(M,M), x̂f(M,M)),

and

m ≥ x̂f(x̂f(m,m), x̂f(m,m)).

Since in both cases these inequalities can be combined with our previously derived inequalities

so that M > x̂ implies x̂f(x̂f(M,M), x̂f(M,M)) < M , thus it must be that M = x̂.

Likewise m < x̂ implies that x̂f(x̂f(m,m), x̂f(m,m)) > m so it must be that m = x̂. So

we have proved asymptotic convergence, but we still have to prove stability. Assume that

our initial conditions x0, x1 are within δ of our fixed point x̂ where 0 < δ < x̂, note that for

x0, x1 it is the case that

−2x̂δ

x̂+ δ
< xn − x̂ <

2x̂δ

x̂+ δ
.

Thus for x2 we have that x2 = x1f(x1, x0) and since f is monotonically decreasing in the

second argument and non-increasing in the first argument we have x1f(x1, x0) > (x̂−δ)f(x̂+
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δ, x̂ + δ) = x̂−δ
x̂+δ

(x̂ + δ)f(x̂ + δ, x̂ + δ) which from the fact that x̂ < bf(b, b) for b > x we can

show is greater than x̂−δ
x̂+δ

x̂ which by simple algebra can be shown to be greater than x̂− 2x̂δ
x̂+δ

.

A symmetric chain of argument establishes that x2 < x̂+ 2x̂δ
x̂+δ

.

We denote by C0 the semi-cycle which contains x1 and without loss of generality assume

that C0 is negative. Also assume that C0 is not the last semi-cycle (if it is then it is then the

point is trivial since the sequence must be then be constant after C0) and denote the next

semi-cycle C1. We will then denote the minimum of C0, xmin and the maximum of C1, xmax

from part 2 in our facts list above we know that for all n we have xmin < xn < xmax. If x0

is in C0 then we know that xmin = x0 or xmin = x1. Clearly xmin > x̂− δ > x̂− 2x̂δ
x̂+δ

, while

we also have

xmax < x̂f(xmin, xmin) < x̂f(x̂− δ, x̂− δ) < x̂

x̂− δ
(x̂− δ)f(x̂− δ, x̂− δ),

which is less than

x̂

x̂− δ
x̂f(x̂, x̂) =

x̂2

x̂− δ
< x̂+

2x̂δ

x̂− δ
.

So we can conclude that

x̂− 2x̂δ

x̂− δ
< xmin ≤ xn ≤ xmax < x̂+

2x̂δ

x̂− δ
.

Now if x0 is not in C0 and x2 must be in C0 then it must be that x0 ≥ x̂ (since otherwise it

would be included in the leading negative semi-cycle) and xmin = x1 or xmin = x2 in the first

case we can proceed just as above, in the second case we note that we have already shown

that x2 > x̂ − 2x̂δ
x̂−δ and x2 < x̂ − 2x̂δ

x̂−δ so the conclusion again follows. If given an ε > 0 we

choose δ = x̂ε
2x̂+ε

and thus x0, x1 ∈ (x̂ − δ, x̂δ) implies that |xn − x̂| < ε for all n. Thus x̂ is

stable and the proof is complete.

The tediousness of the above proof gives evidence to the fact that ”brute force” analysis

of non-linear discrete dynamical systems thus far yields results regarding global stability of
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equilibria only by exploiting specific analytic properties of the governing equations. Our only

universally general result regarding global stability in these systems comes from Liapunov

theory, and there we face the nontrivial problem of determining a suitable Liapunov function

for a given system. Usually in mathematics ”ad hoc” methods like those in the example breed

a justified sense of dissatisfaction and we search for more systematic approaches. One such

approach to the problem is offered by considering systems as they relate to semiconjugates

of maps of the real line. For further results in this area readers are encouraged to refer to

[25].
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Chapter 4

Bifurcations

If we restricted our discussion to linear systems the only phenomena of interest would be the

(comparatively) placid behavior of the systems equilibrium, which would be relegated to the

origin. However, in the nonlinear case more sophisticated phenomena manifest. The focal

point of interest in dynamical systems in the past several decades has been the phenomena

of bifurcation that we lightly touched on in the introductory sections when discussing the

logistics map. In chapter 3 we were able to analyze the behavior of equilibria when the

maximum modulus of the Jacobian’s eigenvalues was not unity. In these cases the equilibrium

in question is said to be hyperbolic. In cases where the equilibrium is not hyperbolic the

linearization may fail to reveal the behavior of the system on certain subspaces of the state-

space. These subspaces are associated with the eigenvectors of the Jacobian matrix with

eigenvalue λ = 1.

The theory resulting from the analysis of these subspaces is called Center Manifold The-

ory, and the specific case of Center Manifold Theory for the two dimensions will be expounded

in the next subsection. Our presentation will follow that given in [6].
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4.1 Center Manifold Theory

We will consider a discrete dynamical system with transition function defined from the state-

space R2 → R2, with an associated parameter space a subset of Rn. Our analysis will concern

what qualitative changes happen to the system’s equilibria as we vary the input parameters.

We will denote this system

x(n+ 1) = F (µ, x(n)) x(0) = x0, (4.1)

where the µ is vector of parameters. For the purposes of our analysis we will also assume

that F (µ, x) has continuous derivatives at least up to the third degree. For a given value of

µ say µ∗ the point x∗ is said to be an equilibrium of the system (4.1) if

F (µ∗, x∗) = x∗.

When the Jacobian matrix, A, of this system exists and the maximum modulus of the

eigenvalues is not equal to one then we can refer to the previous section’s theorem to suffi-

ciently analyze the system about its equilibrium points. To handle the case where ρ(A) = 1

we first fix µ and by a suitable change of coordinates, translate the equilibrium to the origin

and use as basis vectors the eigenvectors of the Jacobian matrix with x being the basis vector

associated with λ = 1. Then since we are in the plane we consider the system (4.1) to be

represented as, given a point (x,y)

x 7→ x+ f(x, y)

y 7→ by + g(x, y),
(4.2)

which in our discrete context will be
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x(n+ 1) = x(n) + f(x(n), y(n))

y(n+ 1) = by(n) + g(x(n), y(n).

We can now state the Center Manifold Theorem following [6]:

Theorem 4 (Center Manifold Theorem). Assume that we are given a system of the form

(4.2) Then there is a continuously differentiable (to at least the third degree) center manifold

M which can be represented locally about the equilibrium (which has been translated to the

origin via change of basis) as

M = {(x, y) : y = h(x), |x| < δ, h(0) = 0, Dh(0) = 0}

for sufficiently small δ. The behavior of the system on M is locally equivalent to the mapping

x 7→ x+ f(x, h(x))

Thus if

x(n+ 1) = x(n) + f(x(n), h(x(n)))

is stable at the origin so is the overall system. Likewise, asymptotic stablity or instablity

follow from the asymptotic stability or instability of the system on the center manifold. We

have thus been able to reduce analysis of our two-dimensional systems to analysis of its

behavior on a one-dimensional manifold. In general this manifold will be approximated by

its Taylor series expansion and we will be able to derive results from that.

4.2 Bifurcation Results in Two Dimensions

When dealing with a two-dimensional discrete dynamical system given by the equation

x(n+ 1) = F (x(n), µ) (4.3)
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about a fixed point x0 where x is in R2, µ is a real-valued parameter constant, and f is

sufficiently smooth, we have several guiding results. The linearization results from chapter

3 follow if the associated Jacobian matrix J = DF (x0) has no eigenvalues equal to 1. If J

has an eigenvalue exactly equal to 1 we must consider the center manifold defined as h(x, µ)

and note the following three cases

1. The system has a saddle-node bifurcation if ∂h
∂µ

(x0) 6= 0 and ∂2h
∂µ2

(x0) 6= 0

2. The system has a pitchfork bifurcation at the equilibria if ∂h
∂µ

(x0) = 0 and ∂2h
∂µ2

(x0) = 0

3. The system has a transcritical bifurcation if ∂h
∂µ

(x0) = 0 and ∂2h
∂µ2

(x0) 6= 0.

If J has an eigenvalue equal to -1 then the system will have a period-doubling bifurcation at

the equilibrium. If there is a pair of complex eigenvalues with modulus 1, then the system

will have a ”Neimark-Sacker” bifurcation which corresponds to the Hopf-bifurcation from

ordinary differential equations and is sometimes referred to as a ”discrete Hopf” bifurcation.

Now would be a good time to go over just what these types of bifurcation entail in a two

dimensional system with some elementary examples. Note that with our two dimensional

system with state-space R2 the system’s behavior about a fixed point x0 will depend on its

behavior on the one-dimensional center manifold if the eigenvalues are real, thus it suffices

to investigate the bifurcation behavior in one dimension unless a pair of complex conjugate

eigenvalues exist for the linearized system.

4.2.1 Saddle-node,Transcritical, and Pitchfork Bifurcation

The first type of bifurcation which we will discuss is a saddle-node bifurcation. As stated

above we are investigating the behavior of the system on a one dimensional center subspace

so that we are interested in the behavior of

x(n+ 1) = x(n) + f(µ, x(n), h(x(n))) (4.4)

37



www.manaraa.com

about an equilibrium point x0 where h is a function defining the center subspace. For

notational convenience we will use the fact that h is a function of x to suppress it and

consider f with regard to its explicit x dependency, i.e. f(µ, x(n), h(x(n)) = f(µ, x). We

are now ready to state the conditions for saddle-node bifurcation to occur.

Definition 9. Let f(µ, x) as above be sufficiently smooth so as to have two continuous

derivatives with regard to both x and µ then if:

1. f(x0, µ0) = x0

2. ∂f
∂x

= 1 at (x0, µ0)

3. ∂2f
∂x2
6= 0 at (x0, µ0)

4. ∂f
∂µ
6= 0 at (x0, µ0)

then we say that a saddle-node bifurcation has occurred at (x0, µ0).

When a saddle-node bifurcation occurs in two dimensions a single equilibrium point of

the system bifurcates into two distinct equilibria points with opposite stability properties,

thus by analogy to ”saddles” from multivariate calculus we get the name ”saddle-node”.

We now present a simple example of a system exhibiting a saddle-node bifurcation. Con-

sider a system such that on the center manifold dynamics are determined by the equation

f(x) = µ+ x− x2

at the point (0,0). We certainly have f(0, 0) = 0 and ∂f
∂x

(0, 0) = 1. While ∂2f
∂x2

= −2 6= 0

and ∂f
∂µ

= 1 6= 0. So a saddle-node bifurcation will occur. In this instance as µ passes from

negative to positive values the system goes from having no equilibria to a single unstable

fixed point at the origin, to having two equilibria at x = ±√µ with the negative branch

unstable and the positive branch stable.
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The saddle-node bifurcation requires that ∂f
∂µ
6= 0 at the equilibrium of interest. If this is

not the case, i.e. if ∂f
∂µ

= 0 but otherwise the same condition hold then either a transcritical

or pitchfork bifurcation may occur. If ∂2f
∂x2
6= 0 then we have a transcritical bifurcation.

Under a transcritical bifurcation two distinct equilibria ”exchange” stability characteristics.

Thus if x0 were a stable equilibrium and x1 an unstable equilibrium for µ < µ0 where µ0 is

a bifurcation value, then for µ > µ0, x1 would be stable while x0 would lose its stability. If

∂2f
∂x2

= 0 then we have a pitchfork bifurcation. In this case a stable (re: unstable) equilibrium

changes stability and gives off two new branches of equilibria which take on its previous

stability characteristics.

4.2.2 Period Doubling Bifurcations

We are now going to investigate bifurcation behavior near an equilibrium when the center

manifold of the system at the fixed point is associated with an eigenvalue of -1. Here we are

interested in the behavior determined by

x(n+ 1) = f(µ, x(n), h(x(n)))

written in terms of its x and µ dependency.

Definition 10. Assume that we have

1. f(x0, µ) = x0,∀µ ∈ (µ0 − ε, µ0 + ε) for some µ0 and ε > 0

2. ∂f
∂x

(x0, µ0) = −1, and

3. ∂2f2

∂µ∂x
(x0, µ0) 6= 0

Then there is an interval I about x0 and a function m(x) : I → R from the interval into

the parameter space such that f(x,m(x)) 6= x but f 2(x,m(x)) = x. Here we say that a

period doubling bifurcation has occurred.
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An example of such a bifurcation is given by the equation

f(x, µ) = −µx+ x3

Notice that (0, 1) is an equilibrium for the given system and that this is the case regardless of

µ, also with µ = 1 the derivative with respect to x at (0,1) is -1, thus our first two conditions

are easily verified. For the last condition we need to find f(f(x, µ), µ), which is simply

f 2(x, µ) = −µ(−µx+ x3) + (−µx+ x3)3

so we can see that

∂2f 2

∂µ∂x
(0, 1) = 2 6= 0

so we conclude that a period doubling bifurcation has occurred and a new orbit of period-two

has emerged.

4.2.3 Neimark-Sacker Bifurcation

When the Jacobian matrix of our linearized system has two complex conjugate eigenvalues

of modulus one a Neimark-Sacker bifurcation, sometimes called a discrete Hopf bifurcation,

will occur. The dynamics of this bifurcation are similar to a Hopf bifurcation, in that an

equilibrium alters stability properties and a closed, invariant curve emerges. The criteria for

a Neimark-Sacker bifurcation are now given:

Definition 11. Let f(x, µ) be sufficiently smooth so as to have continuous derivatives to at

least the fifth order. And let the following conditions hold:

1. f(0, µ) = 0 so that the origin is a fixed point of the system

2. The Jacobian matrix Df(0, µ) has a pair of complex conjugate eigenvalues depending

on µ of the of the form λ(µ) = r(µ)eiθ(µ) where r(0) = 1, dr
dµ
6= 0 and θ(0) = θ0 So that
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the modulus at µ = 0 is 1

3. eikθ0 6= 0 for k < 5

Then for small µ, the system defined by f generates a closed, invariant curve around the

origin if µ
f(µ)

> 0. If f(0, µ) > 0 then it is attracting, while if f(0, µ) < 0 it repels. We say

that a Niemark-Sacker bifurcation has occurred.

For example consider the two-dimensional discrete dynamical given in polar coordinates

by

r(n+ 1) = (1 + µ)r(n) + [r(n)]3

θ(n+ 1) = θ(n) + β.

As µ goes from negative to positive values the origin equilibrium loses its stability and an

attractor appears–an invariant circle of radius
√
µ.

4.2.4 Contact Bifurcation of Basins of Attraction

For the sake of comparison we begin this section by considering some geometric properties

of continuous dynamical systems1. Consider the system defined by the equations

dx

dt
= f(x, t) (4.5)

where t is a continuous time parameter, x is vector in the state space Rn and f(x, t) is a

continuous function from Rn+1 → Rn, for any given initial state x0, the solution trajectory,

Γ(x0) is defined to be the set of all points x in the state space such that

x(t) = x0 +

∫ t

0

f(x, s)ds

for some t ∈ [0,∞). We have already noted that it is impossible for a trajectory in a

continuous system to intersect an equilibrium point unless it begins on that equilibrium

1Material in this section is adapted from [1]
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point. It should also be noted that for distinct starting point, x0 and y0 the trajectories

Γ(x0) and Γ(y0) cannot intersect in finite time. If S is a given set in the state space and

as t → ∞ the solution of (4.5), φ, approaches the set S in the given metric, S is said

to be the ”ω-limit set” of φ. If we take S the set of x0 ∈ Rn such that S is the ω-limit

set of φ(x0) is called the basin of attraction for S. In the continuous case the fact that

solution trajectories can not overlap and that initial conditions which are not equilibria

can never actually reach equilibria in finite time prevents basins of attraction from varying

geometrically too much from the topological structure of the attractor set. However, as we

have shown earlier in the discrete case it is possible for the solution trajectories (i.e. the

orbits) to reach equilibrium points in finite time, likewise the orbits generated by different

initial conditions in discrete dynamical systems have a greater degree of freedom in regards

to ”crossing paths” with the orbits of other initial conditions. This allows for basins of

attraction with much more complex geometric and topological properties than the attractor

set with which they are associated. Much like the equilibria themselves, these basins of

attraction can undergo significant qualitative behavioral changes as parameters are varied,

meaning that they too can be the subject of bifurcation analysis. To begin our analysis we

will introduce the intuitive notion of a ”non-invertible” map T : Rn → Rn, where Rn is the

underlying state space for our system. For a given x̂ in Rn we define the set T−1(x̂) as the

set of all x ∈ Rn such that T (x) = x̂, that is the preimage of x̂ under T . A map is invertible

if it is a function and the preimage of each singleton set in the range of T is itself a singleton

set. Thus a non-invertible map is a function for which the preimage of a singleton in the

range is a non-singleton (and non-empty) set. In layman’s terms multiple elements in the

domain map to the same element in the range.

We want to investigate the behavior of the discrete dynamical system defined by:

xn+1 = T (x(n)) x(0) = x0 (4.6)
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where T may be a non-invertible map. We take the set S to be an attractor for the above

system, i.e. a closed invariant locally asymptotically stable set under our usual definitions

and let B(S) the basin of attraction for S. If we let U be an open neighborhood of S such

that T n(x)→ S as n→∞ for all x in U then

B(S) = ∪∞n=0T
−n(U)

We define the rank 1 preimage under T of a point x̄ in our state space X as the set of all

xi in X such that T (xi) = x̄, the rank 2 preimage as the set of all xi such that T 2(xi) = x̄,

and so on. We can partition the state space, X, into distinct regions Z0, Z1, ...Zk denoting

that the points in Zk each have k rank one preimages, that is each point x in Zk is mapped

to by one iteration of T from k distinct points in X.

We now wish to generalize a basic notion from first year calculus, that of a local max-

imum/minimum and a critical point to help us understand the bifurcations that can occur

with regard to basins of attraction. If we consider the one dimensional map defined by

f(x) = −(x−1)2 +1 on the interval [0, 2] so that the range of f is contained in [0, 2]. Clearly

f(x) is not invertible on the given domain, since for every value in [0, 1) there are two distinct

points in [0, 2] which map to that value under f . The point of interest in the co-domain is

{1} mapped to by 1 in the domain. In elementary calculus the point {1} in the domain is

called a ”critical point” while {1} in the codomain is the local max of f . For generalization

purposes, we are interested in what happens as we vary from zero to one the codomain.

Points in [0, 1) have two preimages which, as we approach 1, collapse into a single preimage,

and for values in (1, 2] there are no preimages . In our established notation [0, 1] could be

partitioned into Z2 = [0, 1) and Z0 = (1, 2]. Thus the local maximum is the boundary of the

Zk sets, and the point which the function takes to the local max is called a critical point.

We are now ready for our generalization:

Definition 12. The critical set, CS, is the set of all points which, under a given transfor-
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mation T , have at least two rank-1 preimages which come together, located on CS−1, the ”set

of merging preimages” so that T (CS−1) = CS.

A critical set separates a subset of the systems state space into say a Zk+2 region

and a Zk region. For points x in Zk+2, k + 2 preimages exist, which we will denote by{
T−1

1 , T−1
2 , ..., T−1

k+1, T
−1
k+2

}
, say T−1

1 , T−1
2 are the two preimages which merge, then the re-

spective ranges of T−1
1 , T−1

2 are in different regions of Zk+2 separated by the set CS−1, and

on CS−1 these preimages come together on their image CS and they disappear as we cross

CS into ZK . Analogous to the one dimensional example above, where ”critical points” in

the domain of the function map to local maximums or minimums in the range and df
dx

= 0

at these points, if f is a smooth map then the preimage of the critical sets CS−1 will have a

determinant which evaluates to zero for the Jacobian of f . Likewise points of discontinuity

or non-differentiable kinks may also belong to CS−1.

We will present a one-dimensional example of how these critical sets can cause interesting

behavior and ”contact” bifurcations in nonlinear systems basins of attraction. Consider the

previously encountered logistics map from above defined by

x(n+ 1) = µx(n)(1− x(n)) (4.7)

We solve for the non-zero equilibrium

x(n) = µx(n)(1− x(n))

1

µ
= 1− x(n)

→ x(n) =
µ− 1

µ

The critical set of the map is the local max which is located at
{
µ
4

}
= CS which divides

the co-domain of the map into two regions Z2 = (−∞, µ
4
) and Z0 = (µ

4
,∞), while CS−1 ={

1
2

}
. If µ is less than 4, initial conditions within the interval [0, 1] will generate bounded
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orbits with attractors varying from our above equilibrium to chaotic periodic orbits at µ.

The basin of attraction for these attractors however remains the interval [0, 1]. How will

the basin of attraction change as the parameter µ varies above 4? Letting I = [0, 1] and

f : R→ R be our mapping then we are interested in the preimage of I under f , f−1(I). The

x0 in I which will exit I after one iteration are those in the interval

(
1−

√
1− 4

µ

2
,

1+
√

1− 4
µ

2

)
,

which will be empty of real solutions when 4
µ
> 1 i.e. µ < 4. Thus the interval is stable under

the logistics map when µ is less than 4. As µ varies past 4, a portion of the image of I under

l, which we’ll call f−1(Ic) ∩ I now leaves I after one iteration of the mapping. Since the Z2

region of the co-domain follows µ
4

up this portion is in Z2 and so has two preimages, each of

which must be contained in I, and must be an interval (since f is continuous with respect to

x), each of these has two preimage intervals in I and so on. If we examine ∪∞k=0f
−k(Ic) ∩ I

we can see using geometric analysis that this is the complement of a Cantor set, thus points

in I whose orbits remain in I, i.e. the basin of attraction for our chaotic attractor, will

themselves form a Cantor set.
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Part II

Applications
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Chapter 5

Applications to Biology

5.1 Some Elementary Examples

The application of discrete dynamical systems to biology predates both subjects. In one

of the earliest entries into the canon of modern western mathematics Leonardo Pisano (Fi-

bonacci), along with introducing Arabic numerals to the Italians, posed the question ”How

Many Pairs of Rabbits Are Created by One Pair in One Year”. In his own words:

”A certain man had one pair of rabbits together in a certain enclosed space, and

one wishes to know how many are created from the pair in one year when it is the

nature of them in a single month to bear another pair, and in the second month

those born to bear also. Because the above written pair in the first month bore,

you will double it; there will be two pairs in one month. One of these, namely the

first, bears in the second month, and thus there are in the second month 3 pairs;

of these in one month 2 are pregnant, and in the third month 2 pairs of rabbits

are born, and thus there are 5 pairs in the month...”[8]

In essence, each mature pair of rabbits produces a new pair of rabbits each month, and it

takes a month for a rabbit to attain maturity and then be able reproduce itself. The sequence

generated by counting the number of pairs of rabbits is {1, 2, 3, 5, 8, 13, 21, 34, ...}, and we
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can see that the rule for generating the next term is to add the previous two terms, ”we add

the first number to the second, namely the 1 to the 2, and the second to the third, and the

third to the fourth...and thus you can in order find it for an unending number of months.”

In our notation the governing transition equation for the recurrence relation is given by

x(n+ 1) = x(n) + x(n− 1), n > 1, x(0) = 0, x(1) = 1.

Let y(n) = x(n− 1) and we get the system of equations:

x(n+ 1) = x(n) + y(n)

y(n+ 1) = x(n),

which we can recognize as a simple linear system:

 x(n+ 1)

y(n+ 1)

 =

1 1

1 0


 x(n)

y(n)


which has the characteristic equation λ2 − λ − 1 which implies that the eigenvalues are

λ = 1±
√

5
2

with associated eigenvectors vλ1 =
(

1+
√

5
2
, 1
)

and vλ2 =
(

1−
√

5
2
, 1
)

. We are given

the initial condition (x(0),y(0))=(1,0), so we can find the closed form solution by projecting

the initial condition onto the eigenvectors and taking the linearized matrix action on the

vector in that form. i.e we will use the fact that (1, 0) = 1√
5
· vλ1 − 1√

5
· vλ2 . So letting

A =

1 1

1 0


and recalling from earlier that the solution to a linear constant coefficient discrete dynamical

system is given by

x(n) = An · x0,
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which for our system can be written as

An
(
vλ1√

5
− vλ2√

5

)
= λn1 ·

vλ1√
5
− λn2 ·

vλ2√
5
.

Since we are only explicitly interested in the resulting vectors first coordinate we note that

the nth Fibonacci number is given by:

x(n) =
1√
5
·

[(
1 +
√

5

2

)n

−

(
1−
√

5

2

)n]

Of course this is an elementary example of a linear discrete population model and only

models the endogenous growth of an idealized single species population. More interesting,

nonlinear phenomena arise when we look at the more complex interactions between compet-

ing species. In the discrete time context we can consider the famous Lotka-Volterra equations

given by:

x(n+ 1) = a · x(n) + b · x(n)y(n)

y(n+ 1) = c · y(n) + d · x(n)y(n)
(5.1)

Here the x and y state variables represent the population levels of two competing species,

while the parameters represent the effect of endogenous growth (for a and c) and exogenous

interaction between the species (for b and d). In essence the a coefficient can be seen as the

natural growth rate for the species represented by the x variable, while the b coefficient is

the penalty or boon (for negative or positive values respectively) incurred from interaction

with the ”y” species. The c and d coefficients play the same respective roles for the y species.

Thus the system as a whole considers the growth in population to be proportional to current

population and proportional to the number of interactions occurring between species, which

all things being equal will be proportional to their product (x · y). Two equilibrium points

for the system are readily seen, the origin and (1−c
d
, 1−a

b
). To analyze the system we can look
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at the Jacobian matrix for (5.1)

J =

a+ b · y(n) b · x(n)

d · y(n) c+ d · x(n)

 .
At the origin the eigenvalues of this matrix will be a and c, thus if the modulus of both a

and c is less than 1 (so neither species is self sustaining or self-propagating) then the system

will decay to extinction. If either of the coefficients is greater than one, at least that species

will locally flourish and its population will expand around the origin, since any depressing

effect from interactions with the other species will be dampened significantly by the low

population level, thus the origin will be unstable. If the largest of a and c is equal to 1

then the stability of the origin will depend on the center manifold that emerges and more

interesting phenomena may occur. We now wish to present two examples from the literature

that extend this basic concept in biological population modeling.

5.2 Example: A Two Dimensional System Modeling

Cooperation

In this section we wish to present a less elementary example involving ”rational” nonlineari-

ties used to model biological systems where two populations are cooperating. We follow the

example of Kulenovic and Nurkanovic in [15] and examine the system represented by the

equations:

x(n+ 1) = Ax(n) · y(n)

1 + y(n)
y(n+ 1) = By(n) · x(n)

1 + x(n)
(5.2)

where A and B are positive real constants.

We note that each of the state variables’ transition functions are monotonically increasing

in the other variable, thus we can say that this models cooperative behavior; each specie’s

population increase in turn helps to increase the other specie’s population. Also we should
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note that the nonlinearity in the system’s transition functions are rational polynomials,which

are a relatively well understood subset of nonlinear expressions [14].

By inspection we can see that the equilibria of the system occur at the points (0,0)

and simple algebra shows that x̄ = ( 1
B−1

, 1
A−1

) will be an equilibrium when A or B do

not equal 1. Given our biological restrictions (i.e. no negative populations) we can thus

conclude that the origin is always an equilibrium for the system, while there will be another

admissible equilibrium at x̄ when A and B are both greater than 1. Assuming that negative

population levels are impossible, and thus restricting ourselves to the the first quadrant,

simple linearization analysis shows that the origin is a locally stable equilibrium. We wish

to establish that the equilibrium at x̄ is locally unstable. We proceed by analysis of different

cases for values of the equilibrium x̄ as follows:

1. A < 1, B < 1. In this case we can see that, under our restrictions, we’ll have that

x(n+ 1) = Ax(n)
y(n)

1 + y(n)
≤ Ax(n)

regardless of our initial value for x(0). This together with the equivalent inequality

for the y values shows that A < 1 and B < 1 implies that all solution trajectories will

approach the origin. Thus the equilibrium x̄ is unstable while the origin is globally

asymptotically stable.

2. A = B = 1. In this case x̄ is nonexistent, so the only equilibrium for the system is the

origin. Also, since in such a case

x(n+ 1) = x(n)
y(n)

1 + y(n)
≤ x(n),

and

y(n+ 1) = y(n)
x(n)

1 + x(n)
≤ y(n),

we have that any given orbit is monotonically decreasing in both components, thus the
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origin is globally asymptotically stable.

3. A = 1, B < 1 (or B = 1, A < 1). By symmetry apparent in the system it is only

necessary for us to pursue one of these two possible parameter combinations. As in

our second case above the origin is the only possible equilibrium of the system, and we

have that x(n + 1) ≤ x(n), while y(n + 1) ≤ y(n), so again we see that the origin is

asymptotically stable.

4. A > 1, B > 1. In this case we have that both the origin and x̄ are equilibria for the

system. Here the analysis become more interesting and less trivial than above. Locally

the origin is again asymptotically stable, while x̄ is a saddle. To show this, we define

the mapping T : (x, y) 7→
(
Ax y

1+y
, By x

1+x

)
and introduce a partial order on the first

quadrant by (x1, y1) ≤ (x2, y2) ⇐⇒ x1 ≤ x2 and y1 ≤ y2, with ’<’ meaning ≤ but no

equality and strong inequality if both x1 < x2 and y1 < y2. We now can present some

useful facts:

First we note that T defined above is a monotone nondecreasing map with respect to

our ordering of the first quadrant [16]. Thus for a given initial value (x0, y0), we have

that

(a) (x0, y0) ≤ T (x0, y0) = (x1, y1) then (xn, yn) ≤ (xn+1, yn+1),∀n ≥ 0, and

(b) (x0, y0) ≥ T (x0, y0) = (x1, y1) ∀n ≥ 0 implies that (xn, yn) ≥ (xn+1, yn+1).

Each of these vector inequality relationships are equivalent to the individual variable

sequences {xn} and {yn} being non-increasing/nondecreasing respectively. Thus we

have:

(x0, y0) ≤ (x1, y1) =

(
Ax0

y0

1 + y0

, By0
x0

1 + x0

)
is true if and only if (x0, y0) ≥ ( 1

B−1
, 1
A−1

) component-wise. So that if x0 ≥ 1
B−1

and

y0 ≥ 1
A−1

each of the respective xn and yn sequences will be nondecreasing, while

if these are taken as strict inequalities then they will be increasing and we will get
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divergence to infinity in each component.

Likewise, we have that

(x0, y0) ≥ (x1, y1) =

(
Ax0

y0

1 + y0

, By0
x0

1 + x0

)

if and only if (x0, y0) ≤ ( 1
B−1

, 1
A−1

) component wise. In which case they will either

remain at the x̄ equilibrium (if equality holds) or decrease to the origin.

Under the current conditions we will have a stable manifold W s associated with x̄.

We consider what happens to the ”quadrants” generated by x̄, that is, considering

the usual I, II, III, IV, about the origin, only with x̄ being the center of our plane

(and restricting our area of inquiry to the first quadrant in the usual terms). For

example, our relativized quadrant IV will be
{

(x, y)|x > 1
B−1

, 0 < y < 1
A−1

}
and our

relativized quadrant I would be
{

(x, y)|x > 1
B−1

, y > 1
A−1

}
. In this case the first and

third quadrants thus relativized to x̄ are invariant under our T mapping. We can see

from some simple investigation that for initial conditions in our (relativized to x̄) third

quadrant have trajectories converging to the origin, while those in the first quadrant

diverge to infinity, so both of these quadrants form invariant subsets under the iteration

mapping. Thus the stable manifold W s must be a subset of quadrant II or quadrant

IV (or both).

Now assume that we are given an initial condition (x0, y0) in our relativized quadrant

IV, so that x0 >
1

B−1
and 0 < y0 <

1
A−1

. Then if y1is in our relativized quadrant I, it

must be that y1 >
1

A−1
. Now since

y1 = By0
x0

1 + x0

>
1

A− 1
,

we have that

By0x0(A− 1) > 1 + x0 > 1 +
1

B − 1
=

B

B − 1
,
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so

By0x0(A− 1) >
B

1−B
,

which implies that

Ay0x0 > y0x0 +
1

B − 1
> (1 + y0)

1

B − 1

which is true if and only if

Ax0
y0

1 + y0

>
1

B − 1

which says that x1 >
1

B−1
. So T (x0, y0) is in the relativized quadrant I.

Likewise, if (x0, y0) is in quadrant IV, if x1 <
1

B−1
then (x1, y1) is in quadrant 3. If our

initial condition is in quadrant II, then we have similar results, i.e. if y1 <
1

A−1
then

(x1, y1) is in quadrant III, and if x1 >
1

B−1
then (x1, y1) is in quadrant I.

We now can see that if A and B are both greater than 1 the stable manifold of the equi-

librium
(

1
A−1

, 1
B−1

)
,which we will denote W s, partitions the (non-relativized) quadrant

I into two invariant regions, is contained in the union of the (relativized) quadrant I

and quadrant IV. Moreover orbits which start in the region which is ”below”(i.e. the

set of initial conditions x0 such that x0 < x and y0 ≤ y or y0 < y and x0 ≤ x for some

(x,y) in W s is the basin of attraction for the origin, while the points in the region above

(in as the same since but with the inequalities switched) will generate orbits diverging

to infinity.

5. A = 1, B > 1. The final case of interest occurs when A = 1, B > 1 (or analogously

A > 1, B = 1) in this case the origin is the only equilibrium, however, the global

dynamics involved are more complex than may appear initially. We can see that given

any admissible initial condition (x0, y0) the sequence of the xn terms is given by

xn+1 = xn
yn

1 + yn
< xn
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hence the x coordinate components of an orbit should converge to zero regardless of

starting point. However, where the x component begins has an effect on the future

behavior of the yn sequence. If xn ≤ 1
B−1

then we have

yn+1 = Byn
xn

1 + xn
≤ yn.

To see this, let

C =
Bxn

1 + xn
.

Then we have that

C + Cxn = Bxn → C = xn(B − C) <
B − C
B − 1

,

so it must be that

C(B − 1) = CB − C < B − C,

thus CB < B and we conclude C < 1 regardless of n, thus the yn sequence thus must

go to zero and orbits in this given region must converge to the origin.

The more interesting case arise for initial conditions in which the x component is

greater then 1
B−1

. Analytically these dynamics are not certain, though Kulenovic and

Nurkanovic suggest the following conjecture is true:
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Figure 5.1: B=1.25

Conjecture 1. There exists a decreasing function ψ(x) whose graph has x= 1
B−1

and

y=0 as asymptotes. The points which lie below this curve are in the basin of attraction

for the origin while for initial conditions above the graph of ψ the yn components of

the orbit will go to infinity, while the xn components will approach the line x = 1
B−1

.

In figures 5.1 through 5.3 we have plotted graphs resulting from numerical experimen-

tation with red regions indicating initial conditions in the basin of the origin and blue

regions indicating basins of ∞ for values of B=1.25, 1.333, and 1.5 respectively. From

these we can get the basic outline of the function ψ conjectured.
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Figure 5.2: B=1.333

Figure 5.3: B=1.5
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5.3 Example: A Difference-Delay Model of Flour

Beetle Population Growth

In addition to modeling interactions between species, discrete population models can be

used to model the intra-species dynamics when the biological life cycle of the species creates

distinct forms of the organism. Such is the case for many insects and one of the preeminent

examples in the literature is the larva-pupa-adult or LPA model. In the paper by Kuang

and Cushing [15] the specific model of interest is given by the transition equations

Ln+1 = bAne
−ceaAn−celLn

Pn+1 = (1− µl)Ln

An+1 = Pne
−cpaAn + (1− µa)An

where L, P, A are the population variables representing the number of Larvae, Pupae and

Adult flour beetles, each time step represents the time it take for a larva to mature to a

pupa, b is the number of eggs an adult is expected to lay, and µl and µa are the probabilities

of non-cannibalism related deaths for a larva or adult respectively. Since the model is

derived from a species of flour beetle known to be cannibalistic, the exponential factors

represent probabilities of survival in the presences of other flour beetles and the respective

”c” coefficients, cea, cel and cpa are called the cannibalism coefficients which parameterize

these rates.

We can use the above system to write the equation indicating the number of adults at

time n as a delay equation only in terms of A as

An+1 = (1− µa)An + b(1− µl)An−2e
−ceaAn−2−cpaAn

This governs the system for cases of n ≥ 2, while we can determine the necessary initial
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conditions (A0, A1, A2) from the (A0, L0, P0) initial conditions by noting that

A1 = P0e
−cpaA0 + (1− µa)A0

and

A2 = (1− µl)L0e
−cpaA1 + (1− µa)A1

In the context of a population model it only makes sense to assume that all initial condi-

tions are non-negative, and under such conditions Kuang and Cushing derived some global

asymptotic stability results for the unique positive equilibrium of the above system when it

exists by application of the following theorem from Hautus and Bolis[12].

Theorem 5. Consider the delay difference equation given by

xn+1 = F (xn, xn−1, ..., xn−k) n ≥ 0

with F a continuous function on the region D ⊆ Rn which is increasing in each of its

arguments. Let x̄ be an equilibrium of the system defined by this equation and I be an

interval containing x̄ such that hypercube Ik+1 is contained in D. Assume that for u 6= x̄ we

have

(u− x̄)F (u, u, ..., u) < 0

then for initial conditions in I we have xn is in I for all n and

lim
n→∞

= x̄.

We begin by re-parameterizing the system and letting α = 1 − µa, β = b(1 − µl),

c1 = cea, c2 = cpa and xn = An+2, we rewrite the above delay equation as

xn+1 = αxn + βxn−2e
−c1xn−2−c2xn .
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Working with the reasonable assumptions that all initial conditions are positive, c1 + c2 > 0,

and noting that the probabilistic nature of the µ’s is such that α > 0 and β > 0, we can see

that α + β ≤ 1 implies the origin is the only equilibrium. While if α + β > 1 there will be

another positive equilibrium at x̄ = 1
c1+c2

ln
(

β
1−α

)
. The linearized system about an x̂ in the

new parameters is given by

xn+1 = (α− βc2x̂e
−(c1+c2)x̂)xn + β(1− c1x̂)e−(c1+c2)x̂xn−2,

about the origin this is equivalent to the system

xn+1 = αxn + βxn−2

and is asymptotically stable if and only if α + β < 1 while, letting

A =
c2(1− α)

c1 + c2

ln

(
β

1− α

)
− α

and

B = (1− α)

[
c1

c1 + c2

ln

(
β

1− α

)
− 1

]
,

the linearized system about the x̄ equilibrium is, equivalent to the system

yn+1 = −Ayn −Byn−2.

Kocic and Ladas have shown that the equilibrium x̄ is stable if and only if |B + A| <

1, |A − 3B| < 3, and B(B − A) < 1 [14]. Using these results, Kuang and Cushing have

determined global properties of such systems, notably if α + β ≤ 1 the origin is globally

asymptotically stable.

To show this, it should be noted that given a positive initial value, orbits generated by

the system will have positive terms ad infinitum, since for any index k ≥ n inspection of our

60



www.manaraa.com

delay-formed equations makes it obvious that xk ≥ αk−nxn > 0. Proceeding, if for a given

n we take x̄n to be the max of our three most recent values: xn, xn−1, xn−2 then we have for

all solutions of the system

xn+1 ≤ αx̄n + βx̄ne
−c1xn−2+c2xn

Using the positivity restrictions on our parameters, we can see then that

xn+1 ≤ αx̄n + βx̄n ≤ x̄n

and we deduce that the orbit of the sequence {x̄n} is non-increasing. If we take the limit, x̄,

of this positive sequence to be greater than zero, then we know that there exists a natural

number N such that n > N implies that x̄n < x̄ + ε for any ε > 0. But then for n greater

than N + 2, (using the fact that xk ≥ αk−nxn for k ≥ n) we know that xn ≥ α2x̄n ≥ α2x̄ so

xn+1 < (x̄+ ε)(α + βe−(c1+c2)α2x̄) < x̄− ε

which contradicts x̄ being the limit of the non-increasing sequence. Thus the limit of the

orbit must be zero.

Now in the case where α + β > 1 there will be another, positive equilibrium. Kuang

and Cushing have shown that in this case if β < min(e(1 − α), eαc1
c2

) then this emergent

equilibrium is globally asymptotically stable, provided that our sequence’s initial term is

positive.

Their proof requires the following facts: if α + β > 1 then

lim supxn ≤
β

c1e(1− α)
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and if we let

F (xn, xn−1, xn−2) = αxn + βxn−2e
−c1xn−2−c2xn ,

then for u > 0 and not equal to the non-zero equilibrium x̄

(u− x̄)(F (u, u, u)− u) < 0

If we take the partial derivatives with respect to each variable we see that

∂F

∂xn
= α− c2xn−2βe

−c1xn−2−c2xn ,

∂F

∂xn−1

= 0,

and

∂F

∂xn−2

= β(1− c1xn−2)e−c1xn−2−c2xn .

Using these facts Kuang and Cushing have shown there exists a positive N such that n > N

implies that xn−2 < 1
c1

. Consider the interval I = (0, 1
c1

) and the cube I3, by the non-

increasing property of the solution orbit we know that the non-zero equilibrium is in I3,

while ∂F
∂xn−1

= 0 and ∂F
∂xn−2

> 0. Since xn−2 is assumed to be non-negative we have

xn−2e
−c1xn−2−c2xn ≤ 1

ec1

.

Using the partial derivatives we’ve established we can now see that

∂F

∂xn
≥ α− c2β

c1e
≥ 0.

Thus F is increasing in all of its arguments in I3 and from the results of Hautus and Bolis

we can conclude that the non-origin equilibrium is globally asymptotically stable.

Reminding ourselves that our model concerns cannibalistic flour beetles and that our
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parameter β was a function of the larval survival probabilities and adult reproduction rates

we can see that as these vary we go from a state of forced extinction to a positive equilibrium

for population, which at least intuitively is quite plausible in the biological situation.
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Chapter 6

Applications to Economics

Though from above we saw that the genesis of discrete dynamical systems appears to lie in

its application to biology by Fibonacci in the 13th century, the approach also lends itself to

modeling situations which arise in the social sciences. After all much of Fibonacci’s famed

”Liber Abaci” concerned business and economic calculations. In particular, in economic

systems, the state of the system changes in discrete time steps as agents cannot allocate

resources or make transactions in continuous time. Of course, economic system models have

their own difficulties which distinguish them from biological or physical ones. One must

take into account the possible indeterminacy in human behavior, and make assumptions

regarding people’s decision making which may prove to be inaccurate. Normally, this involves

assumptions of a game theoretic nature: that agents are rational in a certain sense, that

they have perfect information regarding the system’s current state and conditional future

trajectory, etc. But these seemingly unrealistic and restrictive assumptions are necessary

in order to obtain any tractable mathematical model and with careful consideration and

empirical investigation one can still hope to obtain useful results.

In this section we will investigate two applications of discrete dynamical systems to

economic modeling. The first, involving Cournot Duopoly, in such a case there are only two

producers in competition, and results come from assumptions about the economic agents
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actions and the structure of supply and demand in the market. The second case, dealing

with markets where agents display multiple strategies, depends on typical behavior patterns

and uses rationality assumptions to determine the proportions of differing types of behavior

among market participants.

Though the first subject decidedly falls into the category of ”micro” economics, the latter

operates in the gray area between ”micro” and ”macro” phenomena. It is my own hope that

further investigations into discrete nonlinear dynamics will help to bridge the gap between

the micro and macro aspects of economics in a general theory which will better explain both.

6.1 Cournot Duopoly: Stability of the Cournot Point

and its Bifurcation Dynamics

Our first example deals with competition between producers when the market for their

products cannot be said to perfectly competitive in the sense that an ideal commodity

market is. In the standard case of a commodity market, many producers compete amongst

each other in an open market to sell to consumers a uniform, substitutable product. In

such cases the standard theory says that the prices that the producers must charge, and

which the consumers must pay, is a function of the aggregate supply of and demand for

the product; any given individual producer’s or consumer’s preferences or decisions have a

negligible effect on the market price of the product. This is an accurate description of how

markets function where there are many sellers and when different producers products are seen

as interchangeable by the consumers and thus no advantage is to be gained from branding

or other differentiation, and when there are enough active consumers that no individual or

like-minded group of consumers can conspire to bid down the price to a significant extent.

Such a case is nearly obtained for most wholesale food products, gasoline,and raw materials

like copper, lumber, etc.

An alternative situation arises when high barriers to entry (or, in more nefarious situ-
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ations, conspiracy) allow a single producer to dominate a market. In this case the single

producer is said to have monopoly (i.e. single seller) power. From its earliest days as an

academic discipline, economist have warned of the poor outcomes which arise when a firm

obtains this kind of power.

The situation which we are interested in is one where neither of these extremes of perfect

competition nor monopoly power are obtained. In such a case a small number of firms

compete in a market for a large number of customers with a fixed demand function. The

price of the good is then heavily dependent on the choices of each of the individual firms.

Such a case is called an oligopoly and the instances of it in our society are myriad: smart

phones, beverages, trucks, turbines, box cereal, etc. When choosing how much to produce

and sell each firm must take not only what other firms will choose into account, but how

other firms will react to their choice, and how other firms anticipate how each other will

react, etc. This creates a game theoretical dynamic which requires a great deal more effort

to parse and can lead to anything form steady equilibrium to chaotic and unstable behavior.

In the literature such systems are referred to as ”Cournot Oligopolies”, named for the

French mathematician and political economist Antonie Augustin Cournot who first studied

them in the early nineteenth century.

We will present some results from Puu [22] when there are two firms, Firm A and Firm

B, in market competition, i.e. a ”duopoly”. If A brings x units of product to market at

marginal cost α, while B brings y units to market at marginal cost β we assume the price

commanded, p, is inversely proportional to supply so that

p =
1

x+ y
.

The profits of the firms, PA and PB, respectively, will be given by

PA =
x

x+ y
− αx,
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and

PB =
y

x+ y
− βy.

If each firm takes the output of the other firm as given (i.e. constant) they can use standard

calculus techniques to maximize their profit function. In the case of firm A they would note

that

∂PA
∂x

=
y

(x+ y)2
− α.

Setting this equal to zero they would get

(x+ y)2 =
y

α
,

thus

x =

√
y

α
− y.

This implies that the decision for how much firm A should bring to market is entirely

dependent on their costs and how much firm B brings to market. The same, symmetrical

reasoning applies to firm B, so

y =

√
x

β
− x

If we consider the the two profit maximization curves simultaneously their intersection is

what is called the ”Cournot Point”. At this point the profit commanded by firm A will be

β2

(α+β)2
while the profit of firm B will be α2

(α+β)2
.

This assumes a static system where both agents know perfectly what the other agent

will produce and this knowledge has no corresponding effect on the other agent’s decisions.

This is very unrealistic. However, it is plausible to assume that the system is evolving in

discrete time steps and that each firm knows how much the other firm brought to market

in the previous time period, and will use that to determine how much to bring to market in

this time period. So that the sequence of the quantity of goods each firm brings to market
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{(xn, yn)} is governed by the system of equations

xn+1 =

√
yn
α
− yn

yn+1 =

√
xn
β
− xn

with suitable restrictions on the admissible values of parameters and variables.

The Cournot point is an equilibrium for the iterative system, and, following standard

practice, we would like to know about the stability and potential for bifurcations that may

occur at this equilibrium. The Jacobian for the above system is

 0 1
2
√
αyn
− 1

1
2
√
βxn
− 1 0


The eigenvalues of which at the Cournot point are λ = ±β−α

4αβ
Thus the stability of the

Cournot point depends on the relative difference in the producers marginal costs, α and

β. If we assume a case where the marginal costs start out close together and then diverge,

as |β−α
4αβ
| passes crosses the unit circle theoretical considerations previously examined tell us

that the Cournot point will lose its stability and chaotic period doubling dynamics occur.

This sheds interesting light on the oligopolistic situation being models, as the ratio of the

marginal costs for the individual firms change its possible for chaotic behavior to take hold

in the price of the product. This runs counter to the naive theory of market behavior, which

assumes many producers, that price should always tend towards equilibrium. In the Cournot

model the usual expectations are fulfilled when the ratio of the firms’ marginal costs is within

a prescribed range (which happens to be β
α
∈ (3−

√
2, 3+

√
2) or α

β
∈ (3−

√
2, 3+

√
2)). But

as the ratio exits this interval we observe wild oscillations in price behavior as opposed to

the plausible assumption that the firm with lower marginal costs drives its competitor from

the marketplace. The result lends to the plausibility to the claim that the market system
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has essential tendencies to instability when oligopolistic dynamics are considered. This is an

example of the period doubling bifurcation leading to chaotic behavior. Other bifurcations

are possible though when further considerations are brought into play. The system given by

the transitions equations

xn+1 =

√
yn
α
− yn

yn+1 =

√
xn
β
− xn,

can be decoupled into two autonomous systems given by the cumbersome equations:

xn+2 =

√√√√√xn
β
− xn
α

−
√
xn
β

+ xn

yn+2 =

√√
yn
α
− yn
β

−
√
yn
α

+ yn.

But other dynamics can arise when we consider situations which don’t lead to decoupling in

such a manner. Such a case arises when we consider each agents decision to lag by a certain

degree, which can be modeled by introducing ”adjustment speed” factors, say c for firm A

and d for firm B, each between 0 and 1. Then the governing equations of the system become:

xn+1 = (1− c)xn + c

(√
yn
α
− yn

)

yn+1 = (1− d)yn + d

(√
xn
β
− xn

)
In the extreme case of c, d = 1 we are back in the case already discussed, in the system

obtains the alternate extreme, c, d = 0, we are in the case where xn+1 = xn and yn+1 = yn

so that the system is static for all values on n. It happens that in this case the equilibria of

the system remain the origin and the Cournot point, however the stability dynamics of the

Cournot point relative to our new parameters manifest new behavior. If we investigate the
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Jacobian of the new system we see that is in the form:

 1− c c
(

1
2
√
αyn
− 1
)

d
(

1
2
√
βxn
− 1
)

1− d

 .
Again it is obvious that in the case where both of our new lag parameters equal 1 we are

back in the original situation. At the Cournot point this evaluates to

 1− c c
(
β−α
2α

)
d
(
α−β
2β

)
1− d

 .
The characteristic equation of this matrix is

λ2 − (2− c− d)λ+ 1− (c+ d) + cd(1 +
(α− β)2

4αβ
).

We can conclude that our eigenvalues will have the form

λ =
2− c− d±

√
c2 + d2 − cd(α

2+β2

4αβ
)

2

If it is the case that both of the eigenvalues are less than 1 in modulus we will have a stable

equilibrium and we examine what happens when either eigenvalue passes through this critical

value. Since the determinant of a matrix is the product of its eigenvalues we can infer that

a change in stability will occur at the Cournot point when the determinant goes from being

less than 1 in modulus to greater than 1 in modulus. Algebraically this occurs when

(1− c)(1− d) + cd
(α + β)2

4αβ
= 1,

that is to say

c+ d = cd

(
1 +

(α + β)2

4αβ

)
,
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which leads to the conclusion

4αβ(
1

c
+

1

d
− 1) = (α− β)2.

We can substitute this into the discriminant of our parameterized eigenvalues to determine

via algebriac manipulation that

λ =
2− c− d±

√
(c+ d)(c+ d− 4))

2
.

Both c and dare restricted to values between 0 and 1, so this says that the eigenvalues of

the Jacobian at the Cournot point must be complex as the equilibrium loses stability, thus

we can conclude that a Neimark-Sacker bifurcation has then occurred generating a closed,

invariant curve. In this case the new curve is ”sub-critical” meaning that it is an unstable

set. Understanding such bifurcations requires exceptionally subtle analysis and readers are

encouraged to see [10] and [22] for more details on this subject.

6.2 Markets with Heterogeneous Agents: Stability

and Bifurcation Dynamics due to ”Intensity of

Choice”

In the above case the prevailing price of the objects sold depended on the game theoretic

dynamics between both producers. In a perfectly competitive market, i.e. one with many

producers competing as opposed to only two, the price commanded for a unit produced will

depend on the aggregate demand for the product and on how much quantity the producers

bring to market. But how much each producer brings to market is in turn determined by the

price which the product is expected to fetch. Thus, assuming a constant aggregate demand,

the price commanded is a function of the price expected, and the price which is expected
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in the next time step usually is some function of the price commanded in the current or

in a previous chain of time steps. This feedback dynamic creates a great deal conceptual

difficulty when one wants to try to model the situation that arises in a perfectly competitive

market.

One way of simplifying the situation and to make it amiable to mathematical modeling

which arose during the 1970’s is the rational expectations hypothesis or REH. Championed

by the ”freshwater” school of economics and notably by the Nobel Laureate Robert Lucas,

under the rational expectations hypothesis all agents are assumed to have access to unbi-

ased statistics that accurately predict the future values of prices, thus, except for statistical

fluctuations due to chance, the expected price at time n+ 1 will be the actual price at time

n+ 1. Thus prices reflect all the information available plus or minus some statistical error.

By assuming this degree of similarity amongst the agents in both strategy and in knowl-

edge, markets can be assumed to be efficient in that no slack utility is left on the table once

transactions have all cleared. This deduction from the rational expectations hypothesis is

called the efficient market hypothesis or EMH [13]. For anyone who has interacted with

human being in business or in financial markets such assumptions stretch one’s credulity.

Economists have noted the seeming unrealistic-ness of the modeling assumptions and have

offered alternative descriptions. The one of most interest to us here is that of heterogeneous

agents, i.e. the assumption that market participants have diverse expectation strategies and

knowledge levels as opposed to uniform rational expectations and perfect knowledge. Brock

and Hommes ([2],[3],[13] have considered such models and the following is a simplified ver-

sion of their presentation. We assume that the demand function, D, for a given product is

decreasing linearly in price while the supply function, S, is increasing linearly in price so

that

D = d− αp

S = βp
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with α, β, d positive real constants. Now we assume there are two types of firms compet-

ing in the market, type A firms are ”naive” or trend-chasers and simply expect that the

previous time period’s price will be the current time period’s price while type B firms are

”sophisticated” and have perfect knowledge of what the price will be in each time period.

Thus the forecasting rule, i.e. the expected price at time t denoted H(pt) for type A firms

is H(pt) = pt−1 while for type B firms this rule will be H(pt) = pt. The market equilibrium,

that is the point where supply equals demand will then be

d− αpt = β(γpt−1 + (1− γ)pt)

where γ ∈ [0, 1] is the proportion of the market participants adopting the naive strategy. we

can solve for pt obtaining:

pt =
α− γβpt−1

d+ (1− γ)β
.

Of course in the real situation obtaining such perfect information as type B firms obtain has

costs, while the simplistic rule used by type A firms incurs no cost. Also we should consider

the fact that the greater proportion of type B firms in the market (i.e. the closer γ is to

zero) then the more and more pt approaches the constant values α
d+β

, thus the naive rule of

a type A firm will return an almost identical value prediction as the rule determined by the

sophisticated and costly information type B firms obtain, thus it would be pointless to incur

the extra cost of independently obtaining perfect information when following the crowd gives

identical results. Also as γ → 1 the difference between the expected values of the type A’s

and the actual values (which the type B’s obtain) increase, which given a reasonable cost for

information could make it a superior strategy to be a type B firm.

Thus, if we assume that firms have the ability to switch their type from A to B or vice

versa, and thus vary the γ parameter, different strategies will be optimal depending on the

current and expected composition of the market. If we assume that most agents are bounded

rational agents, that is they prefer to use the strategy which, costs considered, maximizes
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their profit, the degree to which agents are willing to jump from the less effective to the

more effective strategy is called the ”intensity of choice” and clearly the parameter γ, and

thus the systems behavior as a whole, is dependent on this intensity.

For example we can consider a market system where there is a single stock for sale, the

stock is assumed to have a fundamental underlying price, pt, though in any given period

the actual price will be the fundamental price plus some deviation σt, we will again have

two types of firms or agents, those who think that the price at the next period will be the

fundamental price, i.e. that σt+1 = 0 so that pt+1 = ft+1 where ft+1 is the fundamental price

at time t, and those that think that the price in the next period will be subject to deviation

in the same direction it was subject to previously pt+1 = gσt + ft+1 where g is a positive

constant trend parameter. If g is smaller than 1 plus the risk free rate of return (hereafter

denoted R, what an investor could get by parking their money in US Treasuries) then the

resulting system is always stable (see [12]) for g much larger than R,i.e. bigger than R2,

the usual price equilibrium is globally unstable. If R < g < R2 then the stability of the

price equilibrium will depend on the intensity of choice, with stability following from low

intensity, and instability from high intensity. Additionally a pitchfork bifurcation may occur,

leading to two additional steady states of the system. Increases in the intensity of choice

can also lead to chaotic behavior, providing what Brock and Hommes [2] call a ”rational

route to randomness” which can help to explain the apparent stochastic behavior of prices

in financial markets while maintaining the rational-agents based modeling prospective, due

to the nonlinearities involved in the system.
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Appendix A

Code List

%Thesis Simulation 3.3

A=10;

B=5;

x(1)=2;

x(2)=1;

for i=2:100

x(i+1)=A*x(i)/(1+B*x(i-1));

end

plot(x,’b*’)

line(’xdata’,[0,105],’ydata’,[9/5,9/5])

%Thesis Simulation 5.2

%B=1.25;

%B=1.3333

%B=1.5

Initialx=[0:0.5:100];

Initialy=[0:0.5:100];
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for i=1:length(Initialx)

for k=1:length(Initialy)

clear x

clear y

x(1)=Initialx(i);

y(1)=Initialy(k);

for j=1:99

x(j+1)=x(j)*y(j)/(1+y(j));

y(j+1)=B*y(j)*x(j)/(1+x(j));

end

if x(100)<0.001

plot(x(1),y(1), ’ro’)

hold on

else

plot(x(1),y(1), ’bo’)

end

end

end
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